蔡赛华

发布日期:2024-10-18浏览次数:

  蔡赛华,男,博士(后),镇江市青年科技人才托举工程培养对象。2020年6月获工学博士学位,2020年8月任教于智能科学与技术系;IEEE/ACM/CCF会员、江苏省计算机学会软件专委会/信息安全专委会/区块链专委会委员、江苏省网络空间安全学会委员、江苏省信息技术应用学会软件技术专委会委员,担任CCF-C类会议APSEC SRC-Track程序委员会委员,担任TIFS、TDSC、TSMC、TNSM、TSUSC、PR、Information Sciences、COSE、JCST、IET Software、KAIS、KBS、ESWA、EAAI、APIN、NCA、IJIS、COMPAG、APSEC等期刊和会议的审稿人。

  主要从事恶意流量检测、软件安全性测试、异常数据检测等研究,发表学术论文70余篇,以第一作者或唯一通讯作者在:TOPS、TRel、Information Sciences、Computers & Security、The Computer Journal、IST、JSS、JSEP、KBS、ESWA、FGCS、IET Software、ASE、ISSRE、SANER、QRS、TrustCom、ISC、SecureComm、软件学报、通信学报等国内外期刊和国际会议上发表高质量学术论文40余篇。作为指导教师带领学生多次获得:中国研究生网络安全创新大赛、全国大学生信息安全竞赛、全球校园人工智能算法精英大赛、蓝桥杯全国软件和信息技术大赛、大学生算法大赛等 国家级赛事二/三等奖。荣获江苏省计算机学会先进个人会员(2021年度)。

  主持和参与的部分科研项目
  [1] 国家自然科学基金青年项目,62202206,概念漂移现象下基于关联分析的异常网络流量识别方法研究,主持,2023/01-2025/12。
  [2] 江苏省自然科学基金青年项目,BK20220515,基于概念漂移检测和适应的异常网络流量识别方法研究,主持,2022/07-2025/06。
  [3] 中国博士后科学基金特别资助(站中)项目,2023T160275,基于数据增强的恶意网络流量检测及攻击溯源方法研究,主持,2023/07-2024/12。
  [4] 中国博士后科学基金面上项目,2021M691310,基于特征关联分析的网络流量异常检测和识别方法研究,主持,已结题。
  [5] 国家自然科学基金面上项目,62172194,面向软件漏洞挖掘的智能化Fuzzing测试方法研究,2022/01-2025/12。(排名第三)
  [6] 国家自然科学基金,U1836116,网络流量中基于数据控制流的漏洞利用程序检测方法研究,已结题。(排名第二)
  [7] 某部委预研领域基金,61***16,基于缺陷********方法研究,已结题。(排名第二)
  [8] “十三五”部委预研基金,61***502,物联网软件链漏洞********技术研究,已结题。(排名第三)

  部分学术论文(*代表通讯作者):
  [1] Saihua Cai*, Han Xu, Mingjie Liu, et al. A Malicious Network Traffic Detection Model Based on Bidirectional Temporal Convolutional Network with Multi-Head Self-Attention Mechanism. Computers & Security, 136:103580, 2024.(SCI,CCF-B)
  [2] Saihua Cai, Jinfu Chen*, Haibo Chen, et al. Minimal rare pattern-based outlier detection approach for uncertain data streams under monotonic constraints. The Computer Journal, 66(1):16-34, 2023.(SCI,CCF-B)
  [3] Saihua Cai*, Li Li, Jinfu Chen, et al. MWFP-Outlier: maximal weighted frequent-pattern-based approach for detecting outliers from uncertain weighted data streams. Information Sciences, 591:195-225, 2022.(SCI,CCF-B)
  [4] Saihua Cai, Jinfu Chen*, Haibo Chen, et al. An efficient anomaly detection method for uncertain data based on minimal rare patterns with the consideration of anti-monotonic constraints. Information Sciences, 580:620-642, 2021.(SCI,CCF-B)
  [5] Saihua Cai, Rubing Huang, Jinfu Chen*, et al. An efficient outlier detection method for data streams based on closed frequent patterns by considering anti-monotonic constraints. Information Sciences, 555:125-146, 2021.(SCI,CCF-B)
  [6] Saihua Cai, Sicong Li, Gang Yuan, et al. MiFI-Outlier: Minimal infrequent itemset-based outlier detection approach on uncertain data stream. Knowledge-Based Systems, 191:105268, 2020.(SCI,CCF-C)
  [7] Saihua Cai, Li Li, Sicong Li, et al. An efficient approach for outlier detection from uncertain data streams based on maximal frequent patterns. Expert Systems with Applications, 160:113646, 2020.(SCI,CCF-C)
  [8] Saihua Cai, Ruizhi Sun*, Shangbo Hao, et al. Minimal weighted infrequent itemset mining-based outlier detection approach on uncertain data stream. Neural Computing & Applications, 32:6619–6639, 2020.(SCI,CCF-C)
  [9] Saihua Cai, Li Li, Qian Li, et al. UWFP-Outlier: an efficient frequent-pattern-based outlier detection method for uncertain weighted data streams. Applied Intelligence, 50:3452-3470, 2020.(SCI,CCF-C)
  [10] Saihua Cai, Ruizhi Sun*, Shangbo Hao, et al. An Efficient Outlier Detection Approach on Weighted Data Stream Based on Minimal Rare Pattern Mining. China Communications, 16(10):83-99, 2019.(SCI,卓越期刊)
  [11] Saihu Cai, Wenjun Zhao, Han Tang, et al. CGSA-RNN: Abnormal Network Traffic Detection Model Based on CycleGAN and Self-Attention Mechanism. In: 23rd IEEE International Conference on Software Quality, Reliability, and Security (QRS 2023), pp. 541-549, 2023.(EI,,CCF-C)
  [12] Saihua Cai, Jinfu Chen*, Xinru Li, et al. Minimal rare-pattern-based outlier detection method for data streams by considering anti-monotonic constraints. In: 23rd International Conference on Information Security (ISC 2020), pp. 274-289, 2020.(EI,CCF-C)
  [13] Jinfu Chen, Jiaping Xu, Saihua Cai*, et al. Software Defect Prediction Approach based on A Diversity Ensemble Combined with Neural Network. IEEE Transactions on Reliability, accept, 2024.(SCI,CCF-C)
  [14] Jinfu Chen, Luo Song, Saihua Cai*, et al. TLS-MHSA: An efficient detection model for Encrypted Malicious Traffic based on Multi-head Self-Attention Mechanism. ACM Transactions on Privacy and Security, 26(4):44:1-21, 2023.(SCI,CCF-B)
  [15] Jinfu Chen, Tianxiang Lv, Saihua Cai*, et al. A novel detection model for abnormal network traffic based on bidirectional temporal convolutional network. Information and Software Technology, 157:107166, 2023.(SCI,CCF-B)
  [16] Jinfu Chen, Yuhao Chen, Saihua Cai*, et al. An optimized feature extraction algorithm for abnormal network traffic detection. Future Generation Computer Systems, 149:330-342, 2023.(SCI,CCF-C)
  [17] Jinfu Chen, Wei Lin, Saihua Cai*, et al. BiTCN_DRSN: An Effective Software Vulnerability Detection Model based on an Improved Temporal Convolutional Network. Journal of Systems & Software, 204:111772, 2023.(SCI,CCF-B)
  [18] Jinfu Chen, Jingyi Chen, Saihua Cai*, et al. A Novel Combinatorial Testing Approach with Fuzzing Strategy. Journal of Software: Evolution and Process, e2537:1-17, 2023.(SCI,CCF-B)
  [19] Jinfu Chen, Yuechao Gu, Saihua Cai*, et al. A Novel Test Case Prioritization Approach for Black-box testing based on K-medoids Clustering. Journal of Software: Evolution and Process, e2565:1-17, 2024.(SCI,CCF-B)
  [20] Jinfu Chen, Chi Zhang, Saihua Cai*, et al. A Memory-related Vulnerability Detection Approach based on Vulnerability Model with Petri Net. Journal of Logical and Algebraic Methods in Programming, 100859, 2023.(SCI,CCF-C)
  [21] Jinfu Chen, Chi Zhang, Saihua Cai*, et al. Malware recognition approach based on self‐similarity and an improved clustering algorithm. IET Software, 16(5):527-541, 2022.(SCI,CCF-B)
  [22] Jinfu Chen, Xiaoli Wang, Saihua Cai*, et al. A software defect prediction method with metric compensation based on feature selection and transfer learning. Frontiers of Information Technology & Electronic Engineering, 2100468, 2022.(SCI,CCF-C,卓越期刊)
  [23] Jinfu Chen, Saihua Cai*, Dave Towey, et al. Detecting Implicit Security Exceptions Using an Improved Variable-Length Sequential Pattern Mining Method. International Journal of Software Engineering and Knowledge Engineering, 27(8):1235-1268, 2017.(SCI,CCF-C)
  [24] Jinfu Chen, Shengran Wang, Saihua Cai*, et al. A Novel Coverage-gudied Greybox Fuzzing based on Power Schedule Optimization with Time Complexity. In: 37th IEEE/ACM International Conference on Automated Software Engineering (ASE 2022), pp.1-5, 2022.(EI,CCF-A)
  [25] Jinfu Chen, Jingyi Chen, Saihua Cai*, et al. A Test Case Generation Method of Combinatorial Testing based on t-way Testing with Adaptive Random Testing. In: 32nd IEEE International Symposium on Software Reliability Engineering (ISSRE 2021), pp.83-90, 2021.(EI,CCF-B)
  [26] Jinfu Chen, Jiaping Xu, Saihua Cai*, et al. An efficient dual ensemble software defect prediction method with neural network. In: 32nd International Symposium on Software Reliability Engineering (ISSRE 2021), pp.91-98, 2021.(EI,CCF-B)
  [27] Jinfu Chen, Yuechao Gu, Saihua Cai*, et al. KS-TCP: An Efficient Test Case Prioritization Approach based on K-medoids and Similarity. In: 32nd International Symposium on Software Reliability Engineering (ISSRE 2021), pp.105-110.(EI,CCF-B)
  [28] Jinfu Chen, Qiaowei Feng, Saihua Cai*, et al. VDABSys: A novel security-testing framework for blockchain systems based on vulnerability detection. In: 19th EAI International Conference on Security and Privacy in Communication Networks (SecureComm 2023), pp. 15-32, 2023.(EI,CCF-C)
  [29] Jinfu Chen, Yemin Yin, Saihua Cai*, et al. An Improved Test Case Generation Method based on Test Requirements for Testing Software Component. In: 22nd IEEE International Conference on Software Quality, Reliability, and Security (QRS 2022), pp.209-218, 2022.(EI,CCF-C)
  [30] Jinfu Chen, Haodi Xie, Saihua Cai*, et al. A formalization-based vulnerability detection method for cross-subject network components. In: 21st IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2022), pp.1054-1059, 2022.(EI,CCF-C)
  [31] Jinfu Chen, Shang Yin, Saihua Cai*, et al. An Efficient Network Intrusion Detection Model Based on Temporal Convolutional Networks. In: 21st International Conference on Software Quality, Reliability, and Security (QRS 2021), pp.768-775, 2021.(EI,CCF-C)
  [32] Ye Geng, Saihua Cai*, Songling Qin, et al. An Efficient Network Traffic Classification Method based on Combined Feature Dimensionality Reduction. In: 21st IEEE International Conference on Software Quality, Reliability, and Security (QRS 2021), pp.407-414, 2021.(EI,CCF-C)
  [33] Dengzhou Shi, Saihua Cai*, Songling Qin, et al. An Identification Algorithm of Attacking Programs based on Quadratic Feature Selection and Fast Decision Tree. In: 21st IEEE International Conference on Software Quality, Reliability, and Security (QRS 2021), pp.133-140, 2021.(EI,CCF-C)
  [34] Jinfu Chen, Bo Liu, Saihua Cai*, et al. AIdetectorX: A Vulnerability Detector Based on TCN and Self-attention Mechanism. In: Symposium on Dependable Software Engineering-Theories, Tools and Applications (SETTA 2021), pp.161-177, 2021.(EI,CCF-C)
  [35] Jinfu Chen, Saihua Cai, Lili Zhu, et al. An Improved String-Searching Algorithm and Its Application in Component Security Testing. Tsinghua Science and Technology, 21(3):281-294, 2016.(SCI,学生一作,卓越期刊)
  [36] 陈锦富, 冯乔伟, 蔡赛华*, 等. 基于形式化方法的区块链系统漏洞检测模型. 软件学报, 35(9):2204-2230, 2024.(EI,卓越期刊)
  [37] 陈锦富, 王震鑫, 蔡赛华*, 等. 基于蜕变测试的区块链智能合约漏洞检测方法. 通信学报, 44(10):164-176, 2023.(EI,卓越期刊)

  授权或申请的部分发明专利
  [1] 发明专利:一种基于核主成分分析的二次特征提取及恶意攻击识别方法。发明人:蔡赛华,陈锦富,赵玲玲,等。授权号:ZL 202110659646.0,2021年。(已授权)
  [2] 发明专利:一种基于双向时间卷积神经网络的异常网络流量检测方法。发明人:蔡赛华,陈锦富,吕天翔,等。专利号:ZL 202210650965.X,2022年。(已授权)
  [3] 发明专利:一种面向监测日志的构件异常信息查找方法。发明人:陈锦富,蔡赛华,黄如兵,等。授权号:ZL 201610116310.9,2016年。(已授权)
  [4] 发明专利:一种基于漏洞攻击数据库及决策树的攻击程序识别方法。发明人:蔡赛华,陈锦富,秦松铃,等。申请号:202110659629.7,2021年。
  [5] 发明专利:一种用于确定最佳的神经网络输入向量长度的方法。发明人:蔡赛华,刘博,陈锦富,等。申请号:202110659650.7,2021年。
  [6] 发明专利:一种基于改进的时间卷积网络的漏洞检测方法。发明人:蔡赛华,陈锦富,林薇,等。申请号:202111257188.4,2021年。
  [7] 发明专利:一种基于双向时间卷积神经网络与多头自注意力机制的异常网络流量检测方法。发明人:蔡赛华,刘明杰,徐涵,等。申请号:202211409998.1,2022年。
  [8] 发明专利:一种基于最大频繁模式非相似性的异常网络流量检测方法。发明人:蔡赛华,陈锦富,徐波,等。申请号:202210226905.5,2022年。
  [9] 发明专利:一种基于图注意力网络的恶意网络流量检测方法。发明人:蔡赛华,赵文军,陈锦富,等。申请号:202310950685.5,2023年。
  [10] 发明专利:一种基于循环生成对抗网络和多头自注意力机制的异常流量检测方法。发明人:蔡赛华,赵文军,陈锦富,等。申请号:202311283486.X,2023年。
  [11] 发明专利:一种基于双向时序卷积网络和多堆叠集成学习的概念漂移检测方法。发明人:蔡赛华,胡佚恺,赵英伟,等。申请号:202311702201.1,2023年。
  [12] 发明专利:一种基于概念漂移检测和自适应的恶意流量检测方法。发明人:蔡赛华,唐晗,胡佚恺,等。申请号:202410009003.5,2024年。

  获批的部分软件著作权:
  [1] 基于模式距离的异常流量检测平台[简称:Pdbandp]V1.0。完成人:蔡赛华,魏忠旺,林敏,等。登记号:2022SR0626385。
  [2] 基于概念漂移检测的异常网络流量识别平台[简称:ANTICD]V1.0。完成人:蔡赛华,唐晗,赵文军,等。登记号:2023SR0414803。
  [3] 基于双向时序卷积网络和多头自注意力机制的异常网络流量检测平台[简称:ANTbTCNAte]V1.0。完成人:蔡赛华,陈智霖,刘明杰,等。登记号:2023SR0414802。
  [4] 基于特征差异的异常数据检测平台[简称:KCROD]V1.0。完成人:蔡赛华,赵光瀚,孙瑜,等。登记号:2023SR0598372。
  [5] 基于图注意力网络和决策树的恶意流量检测平台[简称:MTDPGSADT]V1.0。完成人:蔡赛华,赵星宇,赵文军,等。登记号:2023SR1630233。
  [6] 基于时序卷积网络和多堆叠集成学习的网络流量概念漂移检测平台[简称:CDTCNML]V1.0。完成人:蔡赛华,吴佳旭,赵英伟,等。登记号:2023SR1633973。

  联系方式:
  电子信箱:caisaih@ujs.edu.cn;QQ:562449725